Skip navigation

If you’d like to receive the latest updates from Northumbria about our courses, events, finance & funding then enter your details below.

* At Northumbria we are strongly committed to protecting the privacy of personal data. To view the University’s Privacy Notice please click here

CLOSE

Are you interested in how to make cars better, faster, safer, cleaner and more sustainable? The automotive industry, which includes successful manufacturers like Nissan, Honda and Jaguar Land Rover, needs engineers who can work on design, production, and research and development.

The first three years of the course, or four years if you undertake a year-long industrial placement, are the same as our BEng (Hons) Automotive Engineering. You’ll then complete a further year to gain your MEng. This final year continues the strong focus on automotive engineering. The MEng programme is accredited by the Institution of Mechanical Engineers (IMechE) to meet the academic requirements for registration as a Chartered Engineer (CEng).  

You should apply for this course if you want to meet in full the academic requirements for becoming a Chartered Engineer, which is associated with higher salaries. Employers place particular value on graduates who, because they already have an MEng, don’t need to undertake postgraduate studies alongside their day-to-day work.

Throughout the course you’ll be tackling problems within a practical context. Our sustainable engineering agenda will ensure that you’ll be equipped to work ethically in a world that needs engineers to meet societal challenges.

 

Why choose Northumbria to study MEng Automotive Engineering?

  • Manufacturing & Production Engineering is ranked 15th in the UK by the Complete University Guide for 2024.
  • Engineering is ranked 25th for research power in the UK out of 89 submissions (REF, 2021). This is a rise of 8 places compared to 2014.

 

Are you interested in how to make cars better, faster, safer, cleaner and more sustainable? The automotive industry, which includes successful manufacturers like Nissan, Honda and Jaguar Land Rover, needs engineers who can work on design, production, and research and development.

The first three years of the course, or four years if you undertake a year-long industrial placement, are the same as our BEng (Hons) Automotive Engineering. You’ll then complete a further year to gain your MEng. This final year continues the strong focus on automotive engineering. The MEng programme is accredited by the Institution of Mechanical Engineers (IMechE) to meet the academic requirements for registration as a Chartered Engineer (CEng).  

You should apply for this course if you want to meet in full the academic requirements for becoming a Chartered Engineer, which is associated with higher salaries. Employers place particular value on graduates who, because they already have an MEng, don’t need to undertake postgraduate studies alongside their day-to-day work.

Throughout the course you’ll be tackling problems within a practical context. Our sustainable engineering agenda will ensure that you’ll be equipped to work ethically in a world that needs engineers to meet societal challenges.

 

Why choose Northumbria to study MEng Automotive Engineering?

  • Manufacturing & Production Engineering is ranked 15th in the UK by the Complete University Guide for 2024.
  • Engineering is ranked 25th for research power in the UK out of 89 submissions (REF, 2021). This is a rise of 8 places compared to 2014.

 

Course Information

UCAS Code
H3P6

Level of Study
Undergraduate

Mode of Study
4 years full-time or 5 years with a placement (sandwich)/study abroad

Department
Mechanical and Construction Engineering

Location
City Campus, Northumbria University

City
Newcastle

Start
September 2024 or September 2025

Fee Information

Module Information

Department / Mechanical and Construction Engineering

Find out more about our department, facilities and what other students are taking part in.

Hands with engineering plans

Study

smiling person

Business and Engagement

News / Engineering

Find out what our Engineering students and staff are taking part in and achieving.

light bulb on black background

This course is eligible for a scholarship

find out more →

Discover NU World / A virtual journey through everything Northumbria has to offer.

Explore our immersive 360 tours, informative subject videos, inspirational student profiles, ground-breaking research, and a range of life at university videos and articles.

Delve Deeper / Discover more about life at Northumbria

The Hub / By Students, For Students

Read our student blog and find out what student life is like at Northumbria from real students, tips and advice and much more.

a person sitting in front of a laptop computer

Finalising University Choices

a group of people walking down the street

The Hub

Student Blog

Book an Open Day / Experience Automotive Engineering MEng (Hons)

Visit an Open Day to get an insight into what it's like to study Automotive Engineering. Speak to staff and students from the course and get a tour of the facilities.

Entry Requirements 2024/25

Standard Entry

112 UCAS Tariff points

From a combination of acceptable Level 3 qualifications which may include: A-level, T Level, BTEC Diplomas/Extended Diplomas, Scottish and Irish Highers, Access to HE Diplomas, or the International Baccalaureate.

Find out how many points your qualifications are worth by using the UCAS Tariff calculator: www.ucas.com/ucas/tariff-calculator

Northumbria University is committed to supporting all individuals to achieve their ambitions. We have a range of schemes and alternative offers to make sure as many individuals as possible are given an opportunity to study at our University regardless of personal circumstances or background. To find out more, review our Northumbria Entry Requirement Essential Information page for further details www.northumbria.ac.uk/entryrequirementsinfo

Subject Requirements:

Applicants will need A-level Mathematics and another analytical science subject (Biology, Chemistry, Computer Sciences, Physics or Technology), or recognised equivalents.

GCSE Requirements:

Applicants will need Maths and English Language at minimum grade 4/C, or an equivalent.

Additional Requirements:

There are no additional requirements for this course.

International Qualifications:

We welcome applicants with a range of qualifications which may not match those shown above.

If you have qualifications from outside the UK, find out what you need by visiting www.northumbria.ac.uk/yourcountry

English Language Requirements:

International applicants should have a minimum overall IELTS (Academic) score of 5.5 with 5.5 in each component (or an approved equivalent*).

*The university accepts a large number of UK and International Qualifications in place of IELTS. You can find details of acceptable tests and the required grades in our English Language section: www.northumbria.ac.uk/englishqualifications

Entry Requirements 2025/26

Standard Entry

112 UCAS Tariff points

From a combination of acceptable Level 3 qualifications which may include: A-level, T Level, BTEC Diplomas/Extended Diplomas, Scottish and Irish Highers, Access to HE Diplomas, or the International Baccalaureate.

Find out how many points your qualifications are worth by using the UCAS Tariff calculator: www.ucas.com/ucas/tariff-calculator

Northumbria University is committed to supporting all individuals to achieve their ambitions. We have a range of schemes and alternative offers to make sure as many individuals as possible are given an opportunity to study at our University regardless of personal circumstances or background. To find out more, review our Northumbria Entry Requirement Essential Information page for further details www.northumbria.ac.uk/entryrequirementsinfo

Subject Requirements:

Applicants will need A-level Mathematics and another analytical science subject (Biology, Chemistry, Computer Sciences, Physics or Technology), or recognised equivalents.

GCSE Requirements:

Applicants will need Maths and English Language at minimum grade 4/C, or an equivalent.

Additional Requirements:

There are no additional requirements for this course.

International Qualifications:

We welcome applicants with a range of qualifications which may not match those shown above.

If you have qualifications from outside the UK, find out what you need by visiting www.northumbria.ac.uk/yourcountry

English Language Requirements:

International applicants should have a minimum overall IELTS (Academic) score of 5.5 with 5.5 in each component (or an approved equivalent*).

*The university accepts a large number of UK and International Qualifications in place of IELTS. You can find details of acceptable tests and the required grades in our English Language section: www.northumbria.ac.uk/englishqualifications

Fees and Funding 2024/25 Entry

UK Fee in Year 1: £9,250

* The maximum tuition fee that we are permitted to charge for UK students is set by government. Tuition fees may increase in each subsequent academic year of your course, these are subject to government regulations and in line with inflation.


EU Fee in Year 1: £19,750

International Fee in Year 1: £19,750


Please see the main Funding Pages for 24/25 scholarship information.

 


ADDITIONAL COSTS

Occasionally field trips are arranged. Not participating will not adversely affect your course performance but if you do want to participate, you may need to contribute up to £200.

Fees and Funding 2025/26 Entry

UK Fee in Year 1*: TBC

* The maximum tuition fee that we are permitted to charge for UK students is set by government. Tuition fees may increase in each subsequent academic year of your course, these are subject to government regulations and in line with inflation.



EU Fee in Year 1: **TBC


International Fee in Year 1: TBC

ADDITIONAL COSTS

TBC

If you’d like to receive the latest updates from Northumbria about our courses, events, finance & funding then enter your details below.

* At Northumbria we are strongly committed to protecting the privacy of personal data. To view the University’s Privacy Notice please click here

Modules

Module information is indicative and is reviewed annually therefore may be subject to change. Applicants will be informed if there are any changes.

KB4040 -

Engineering Analytics (Core,20 Credits)

You will learn to use a range of mathematical tools and techniques that you can apply to a wide variety of engineering activities. These skills and practices also underpin the use of more advanced engineering design and analysis tools, so gaining a good understanding of the basic principles now will help as your progress through this programme and enter the world of engineering. You will become familiar in working with formulae so that you can apply these skills within the engineering disciplines. You will learn techniques in algebra and trigonometry, such as those used by engineers to determine the shape, size, slope, mass etc. of objects and spaces as well as when and how objects will move or interact. These techniques are important to determine the unknown components in systems and are also applied to the solution of design and analysis problems. You will learn and apply the techniques of calculus, for example, those that enable you to determine how properties are changing in relation to time, as a result of changes in forces, or to calculate the quantity of work being done during a process. You will develop foundations in the skills required to apply these techniques using software tools as you progress towards more independent and complex engineering activities and prepare for entering an engineering workplace on graduation.

More information

KB4041 -

Materials & Manufacturing (Core,20 Credits)

This module introduces you to the subjects of materials and manufacturing within?the programme.?You will be introduced to how different types of materials are structured and their composition and ultimately how this influences their properties and behaviour. You will also explore how to make things using our practical workshop facilities using different methods and link appropriate manufacturing techniques to different types of materials. You will examine and consider the environmental and societal impact of material selection and different manufacturing approaches.

More information

KB4042 -

Applied Engineering Approaches 1 (Core,20 Credits)

In this module you will be presented with authentic engineering problems that have been derived and adapted from industrial problems to give you opportunities to explore ways to advance solutions as a developing professional engineer. It will, within the supportive environment offered by staff and your peers, allow you to develop your approach to resolving engineering problems that may involve research, experimentation, creativity and the acquisition and utilisation of new engineering skills. Well bounded problem definition will allow you to develop confidence in resolving problems with well-defined information and produce answers that might be considered appropriate based upon engineering judgement and perception associated with the problem. The problems encountered may be focussed within a specific subject theme but may still to some degree require the linking together of knowledge in several topics to derive acceptable solutions and valid resolutions from an engineering perspective.

More information

KB4043 -

Statics & Dynamics (Core,20 Credits)

This module covers the topics of statics and dynamics and introduces you to the fundamental concepts associated with the mechanics subject within the programme. Statics and dynamics describes and characterises how physical bodies behave, move and interact due to external influences. Everyday engineering phenomena will be contextualised through the constraints of fundamental physical laws and relationships. These concepts, such as kinematics, kinetics, structural members and different types of loading, and stress and strain will be applied to solve well-defined engineering problems using appropriate and conventional approaches. You will also learn how to select and apply appropriate experimental methods, analytical tools and computational techniques to characterise and model well-defined static and dynamic problems.

More information

KB4044 -

Thermodynamics (Core,20 Credits)

This module introduces you to the subject of fluids and energy within the programme and covers the topic of thermodynamics. You will apply knowledge and understanding of scientific principles and methodology to solve well-defined thermodynamics problems. You will explore the fundamental concepts of heat, work, and temperature and their relationships with energy, radiation, and physical properties. Analytical and computational tools will be used to model well-defined thermodynamics problems, and you will be encouraged to show creativity during problem-solving activities.

More information

KB4045 -

Applied Engineering Approaches 2 (Core,20 Credits)

The inclusion of this application focussed module in your studies will build on Applied Engineering Approaches I by allowing you to expand the areas of investigation and further develop your problem-solving, teamwork and communication skills. In this module, you will be presented with authentic engineering problems that have been derived and adapted from industrial problems to give you opportunities to explore ways to advance solutions as a developing professional engineer. It will, within the supportive environment offered by staff and your peers, allow you to develop your approach to resolving engineering problems that may involve research, experimentation, creativity and the acquisition and utilisation of new engineering skills. Well bounded problem definition will allow you to develop confidence in resolving problems with well-defined information and produce answers that might be considered appropriate based upon engineering judgement and perception associated with the problem. The problems encountered may be focussed within a specific subject theme but may still to some degree require the linking together of knowledge in several topics to derive acceptable solutions and valid resolutions from an engineering perspective.

More information

KB5031 -

Academic Language Skills for Mechanical and Construction Engineering (Core – for International and EU students only,0 Credits)

Academic skills when studying away from your home country can differ due to cultural and language differences in teaching and assessment practices. This module is designed to support your transition in the use and practice of technical language and subject specific skills around assessments and teaching provision in your chosen subject. The overall aim of this module is to develop your abilities to read and study effectively for academic purposes; to develop your skills in analysing and using source material in seminars and academic writing and to develop your use and application of language and communications skills to a higher level.

The topics you will cover on the module include:

• Understanding assignment briefs and exam questions.
• Developing academic writing skills, including citation, paraphrasing, and summarising.
• Practising ‘critical reading’ and ‘critical writing’
• Planning and structuring academic assignments (e.g. essays, reports and presentations).
• Avoiding academic misconduct and gaining credit by using academic sources and referencing effectively.
• Listening skills for lectures.
• Speaking in seminar presentations.
• Presenting your ideas
• Giving discipline-related academic presentations, experiencing peer observation, and receiving formative feedback.
• Speed reading techniques.
• Developing self-reflection skills.

More information

KB5030 -

Preparing for Placement (Optional,0 Credits)

You will learn to apply for a 12 month placement in a construction engineering company. You will do this through developing and improving your skills in the following areas:

1. Communication
2. CVs
3. Interviews
4. H&S within the workplace
5. Professional conduct
6. Teams
7. Constructing a Learning Plan
8. Evidencing your learning
9. Reflection in the workplace
10. Networking

More information

KB5031 -

Academic Language Skills for Mechanical and Construction Engineering (Core – for International and EU students only,0 Credits)

Academic skills when studying away from your home country can differ due to cultural and language differences in teaching and assessment practices. This module is designed to support your transition in the use and practice of technical language and subject specific skills around assessments and teaching provision in your chosen subject. The overall aim of this module is to develop your abilities to read and study effectively for academic purposes; to develop your skills in analysing and using source material in seminars and academic writing and to develop your use and application of language and communications skills to a higher level.

The topics you will cover on the module include:

• Understanding assignment briefs and exam questions.
• Developing academic writing skills, including citation, paraphrasing, and summarising.
• Practising ‘critical reading’ and ‘critical writing’
• Planning and structuring academic assignments (e.g. essays, reports and presentations).
• Avoiding academic misconduct and gaining credit by using academic sources and referencing effectively.
• Listening skills for lectures.
• Speaking in seminar presentations.
• Presenting your ideas
• Giving discipline-related academic presentations, experiencing peer observation, and receiving formative feedback.
• Speed reading techniques.
• Developing self-reflection skills.

More information

KB5034 -

Mechanics and Finite Element Analysis (Core,20 Credits)

This module provides the opportunity to build on fundamental statics and materials knowledge and further examine applied mechanics with a focus on the development of more in-depth modelling approaches that provide more detail and insight into the behaviour of materials. You will analyse mechanics concepts such as stress and strain transformations, shear stresses in beams and thin-walled structures to the solution of more broadly defined problems where there is some degree of uncertainty in their definition. Finite element analysis, a computational technique, will be used in the analysis and design of mechanical structures, components and systems and compared to complementary experimental and analytical approaches that can be used to underpin, verify and interpret simulation results.

More information

KB5036 -

Integrative Engineering Approaches 1 (Core,20 Credits)

In this module you will be presented with authentic engineering problems that have been derived and adapted from industrial examples to give you opportunities to explore ways to advance solutions as a developing professional engineer. It will, within the supportive environment offered by staff and your peers, allow you to develop your approach to resolving engineering problems that may involve research, experimentation, creativity and the acquisition and utilisation of new engineering skills. The incorporation of a greater degree of uncertainty in the problem definition will allow you to develop confidence in resolving problems with incomplete information and several solutions that might be considered appropriate based upon engineering judgement and perception associated with the problem. The problems encountered may span several subject areas and require the linking together of knowledge in these topics to derive acceptable solutions and valid resolutions from an engineering perspective.

More information

KB5037 -

Engineering Project Management (Core,20 Credits)

In this module you will learn about project management methodologies and their selection, application and use within the context of mechanical engineering projects. This will include the appropriate use of project management tools and software systems to gain insight into how an engineering project might be approached and managed concerning the attainment of successful completion of objectives including the utilisation of resources and other commercial considerations. Other relevant and important factors such as ethical, sustainable, societal and professional responsibilities that are pertinent to project management activity within the field of mechanical engineering will also be explored in the module.

More information

KB5039 -

Integrative Engineering Approaches 2 (Core,20 Credits)

The inclusion of this application focussed module in your studies will build on Integrative Engineering Approaches I by allowing you to expand the areas of investigation and further develop your problem-solving, teamwork and communication skills.

In this module, you will be presented with authentic engineering problems that have been derived and adapted from industrial scenarios to
give you opportunities to explore ways to advance solutions as a developing professional engineer. It will, within the supportive environment offered by staff and your peers, allow you to develop your approach to resolving engineering problems that may involve research, experimentation, creativity and the acquisition and utilisation of new engineering skills. The incorporation of a greater degree of uncertainty in the problem definition will allow you to develop confidence in resolving problems with incomplete information and several solutions that might be considered appropriate based upon engineering judgement and perception associated with the problem. The problems encountered may span several subject areas and require the linking together of knowledge in these topics to derive acceptable solutions and valid resolutions from an engineering perspective.

More information

KB5040 -

Automotive Engineering Design (Core,20 Credits)

In this module you will learn about the application of automotive engineering design methodologies and their selection and use within the context of automotive design problems. Vehicle design problems incorporate specific and unique issues that are driven by the need to provide safe, sustainable and performance solutions that can deliver transport systems fit for the future. This will include the appropriate use of engineering tools and analytical approaches to the solution of engineering design issues whilst ensuring that issues relating to customer needs and associated aspects such as the societal impact of engineering activity are considered to a suitable degree as would be expected of a professional automotive engineer.

More information

KB5041 -

Automotive Fluids & Energy (Core,20 Credits)

This module gives you opportunities to build on fundamental thermodynamic knowledge and examine practical and applied fluid flow and energy systems associated with vehicles, including the areas associated with different types of flow and how they may influence automotive engineering considerations, as well as energy conversion systems. The changes and challenges associated with a move from fossil fuels to providing a more sustainable energy future are also explored in this module and how this may influence automotive development. Based upon the application of relevant mathematical and engineering principles you will use analytical and computational techniques to solve problems associated with vehicle fluid flows and energy systems that have some limited degree of uncertainty in their definition. By addressing such issues using an informed and skilled engineering approach incorporating creativity and curiosity, you will be able to derive substantiated conclusions as a result of your investigations.

More information

KB5031 -

Academic Language Skills for Mechanical and Construction Engineering (Core – for International and EU students only,0 Credits)

Academic skills when studying away from your home country can differ due to cultural and language differences in teaching and assessment practices. This module is designed to support your transition in the use and practice of technical language and subject specific skills around assessments and teaching provision in your chosen subject. The overall aim of this module is to develop your abilities to read and study effectively for academic purposes; to develop your skills in analysing and using source material in seminars and academic writing and to develop your use and application of language and communications skills to a higher level.

The topics you will cover on the module include:

• Understanding assignment briefs and exam questions.
• Developing academic writing skills, including citation, paraphrasing, and summarising.
• Practising ‘critical reading’ and ‘critical writing’
• Planning and structuring academic assignments (e.g. essays, reports and presentations).
• Avoiding academic misconduct and gaining credit by using academic sources and referencing effectively.
• Listening skills for lectures.
• Speaking in seminar presentations.
• Presenting your ideas
• Giving discipline-related academic presentations, experiencing peer observation, and receiving formative feedback.
• Speed reading techniques.
• Developing self-reflection skills.

More information

KB5048 -

Work Placement Year (Optional,120 Credits)

You will learn lifelong technical and communication skills in a commercial work environment enabling you to practice your engineering skills in a nurturing and supportive environment. None technical skills such as team working, clear and precise communication, responsibility and creative thinking will be developed alongside technical and commercial knowledge of your chosen field to generate creative, sustainable solutions.

You will be able to use the placement experience to develop and enhance appropriate areas of your knowledge and understanding, your intellectual and professional skills, and your value attributes, relevant to your programme of study. Due to its overall positive impact on employability, degree classification and graduate starting salaries, the University strongly encourages you to pursue a work placement as part of your degree programme.

This module is a Pass/Fail module so does not contribute to the classification of your degree. When taken and passed, however, the Placement Year is recognised both in your transcript as a 120 credit Work Placement Module and on your degree certificate.

Your placement period will normally be full-time and must total a minimum of 40 weeks.

More information

KB5049 -

Study abroad year (Optional,120 Credits)

This module is designed for all standard full-time undergraduate programmes within the Faculty of Engineering and Environment and provides you with the option to study abroad for one full year as part of your programme.

This is a 120 credit module which is available between Levels 5 and 6. You will undertake a year of study abroad at an approved partner University where you will have access to modules from your discipline, but taught in a different learning culture. This gives you the opportunity to broaden your overall experience of learning. The structure of study will be dependent on the partner and will be recorded for an individual student on the learning agreement signed by the host University, the student, and the home University (Northumbria).

Your study abroad year will be assessed on a pass/fail basis. It will not count towards your final degree classification but, it is recognised in your transcript as a 120 credit Study Abroad module and on your degree certificate in the format – “Degree title (with Study Abroad Year)”.

More information

KB5031 -

Academic Language Skills for Mechanical and Construction Engineering (Core – for International and EU students only,0 Credits)

Academic skills when studying away from your home country can differ due to cultural and language differences in teaching and assessment practices. This module is designed to support your transition in the use and practice of technical language and subject specific skills around assessments and teaching provision in your chosen subject. The overall aim of this module is to develop your abilities to read and study effectively for academic purposes; to develop your skills in analysing and using source material in seminars and academic writing and to develop your use and application of language and communications skills to a higher level.

The topics you will cover on the module include:

• Understanding assignment briefs and exam questions.
• Developing academic writing skills, including citation, paraphrasing, and summarising.
• Practising ‘critical reading’ and ‘critical writing’
• Planning and structuring academic assignments (e.g. essays, reports and presentations).
• Avoiding academic misconduct and gaining credit by using academic sources and referencing effectively.
• Listening skills for lectures.
• Speaking in seminar presentations.
• Presenting your ideas
• Giving discipline-related academic presentations, experiencing peer observation, and receiving formative feedback.
• Speed reading techniques.
• Developing self-reflection skills.

More information

KB6054 -

Professional Engineering Futures (Core,20 Credits)

This module will allow you to explore what it means to be a professional engineer and the various options and opportunities open to you as a developing professional who may be contributing to the furtherment of mechanical engineering in the very near future. Exploring aspects such as the various subject areas and developing themes within mechanical engineering that may allow you to tailor your career aspirations as you graduate, as well as looking at alternative career options, this module will assist you to reflect upon your development to date and consider where you may ultimately wish to direct your career and some of the things that you might do to try and get there. Consideration will be given to the nature, types and sizes of organisations, their various stakeholders, and the different roles engineering has within different organisations. Through contemplation of prospective roles within such organisations and how you may direct your individual professional development, you will develop a roadmap to help you progress your future career based upon the development of core professional values and competencies.

More information

KB6058 -

Automation and Mechatronics (Optional,20 Credits)

This module introduces and explores the various aspects and technologies of industrial automation systems, such as robotic devices, and the appropriate mechanical engineering considerations associated with their design, selection and use. The module will establish competence in the application of automation systems and component selection and their integration that is integral to the specification and operation of such systems in a range of different scenarios. The module will develop the ability to select and use such systems safely and in ways that may be related to organisational aims such as quality, efficiency and output and consider relevant technical areas such as fixed and flexible automation systems, machine control (including programming) and sensor characterisation, selection and integration.

More information

KB6059 -

Global Design Challenges (Optional,20 Credits)

This module allows you to develop your design skills and knowledge through their application to addressing acknowledged global design challenges and problems. It will involve the consideration, selection and application of suitable design methodologies, approaches and techniques that are appropriate to the design problem posed. Problems within the module will be identified as having a significant impact on society (in a global context) that would benefit from the derivation of engineering design solutions within the remit of mechanical engineering subject areas. Key activities based upon design thinking and approaches, sound problem research and its translation into design requirements, through the implementation of scientific and engineering principles will be used to solve complex design problems within an environment that represents an authentic engineering design team and communication of the design results. Professional engineering considerations, such as sustainability and economics, will be some of the factors integral to the process of deriving a solution. They will necessitate a systematic and considered approach to the problem which will be supported by evidenced practical demonstration of design outcome suitability.

More information

KB6060 -

Investigative Project (40 Credits)

You will learn about and demonstrate how to apply the knowledge and skills developed earlier and concurrently in your degree programme whilst also extending your independent learning through a deep investigation of a topic, which may be of your own choice. You will develop your ability to plan, direct, progress and take responsibility for your large scale investigative project. You may be involved in the choice of the topic of your investigation and be able to lead the direction of the investigation under the guidance of a supervisor. Your investigation will be technical in nature, draw upon a broad range of existing engineering knowledge and practice, apply advanced engineering techniques and analysis, draw your verifiable conclusions supported by your findings and enable you to communicate your outcomes and conclusions in a professional manner.

More information

KB6061 -

Vehicle Dynamics and Control (Core,20 Credits)

Vehicle dynamics and control will combine knowledge, understanding, and practical application within the subject of mechanics to tackle complex engineering problems. You will investigate how the field of control theory is used to measure and regulate vibrating mechanical systems, and the impact such motions have on vehicle performance. Advanced techniques and tools will be blended with the methodologies practised in previous years to facilitate investigation into complex dynamics-based problems where independence and creativity are encouraged to explore and critically evaluate potential solutions to more open-ended challenges. Analytical, computational, and experimental techniques will be considered and applied to reach substantiated conclusions.

More information

KB6062 -

Drive Cycles and Performance Modelling (Optional,20 Credits)

You will build upon your knowledge of engineering science to develop an understanding of how the legislation relating to vehicle emissions and fuel economy are applied to the drive cycles and the technologies that contribute to the reduction of harmful emissions. Using this information, you will develop a computational model to predict the performance of a passenger car around a drive cycle that relates to an international standard. The specific engineering principles and technologies that provide the foundation for the design and analysis of a high-performance racing car and their application will be explored and advanced to develop computational models to predict lap times of a vehicle around a circuit.

More information

KB6063 -

Vehicle Aerodynamics (Optional,20 Credits)

Aerodynamics is the study of airflow around objects. This can be applied to the improvement of external and internal effects, such as reducing drag, improving downforce on a vehicle, and controlling the flow of air to provide ventilation and cooling of vehicle systems. This module facilitates the development of your capabilities in the appraisal of engineering principles associated with vehicle fluid dynamics and in particular the subject of aerodynamics. Expanding your use of analytical and computational methods to explore these subjects you will investigate typical automotive areas such as wing theory and design. You will apply and interpret theoretical formulations to practical engineering problems associated with the design, construction, function and efficiency of wings and aerodynamics features associated with automotive vehicles.

More information

KB5031 -

Academic Language Skills for Mechanical and Construction Engineering (Core – for International and EU students only,0 Credits)

Academic skills when studying away from your home country can differ due to cultural and language differences in teaching and assessment practices. This module is designed to support your transition in the use and practice of technical language and subject specific skills around assessments and teaching provision in your chosen subject. The overall aim of this module is to develop your abilities to read and study effectively for academic purposes; to develop your skills in analysing and using source material in seminars and academic writing and to develop your use and application of language and communications skills to a higher level.

The topics you will cover on the module include:

• Understanding assignment briefs and exam questions.
• Developing academic writing skills, including citation, paraphrasing, and summarising.
• Practising ‘critical reading’ and ‘critical writing’
• Planning and structuring academic assignments (e.g. essays, reports and presentations).
• Avoiding academic misconduct and gaining credit by using academic sources and referencing effectively.
• Listening skills for lectures.
• Speaking in seminar presentations.
• Presenting your ideas
• Giving discipline-related academic presentations, experiencing peer observation, and receiving formative feedback.
• Speed reading techniques.
• Developing self-reflection skills.

More information

KB7054 -

Intelligent Transport Systems (Core,20 Credits)

Intelligent transport systems investigate the interconnected world and how this is leveraged to create smarter, safer, and more efficient transport infrastructure. In this module, you will apply comprehensive knowledge of engineering principles to the solution of complex transport problems facing the modern world. Much of this knowledge will be at the forefront of current understanding, and you will demonstrate a critical awareness of new developments and the wider context of engineering. You will select and apply appropriate analytical and computational techniques to model complex problems, discussing the limitations of these approaches within the context of transport infrastructure.

More information

KB7055 -

Smart and Future Vehicles (Core,20 Credits)

You will learn about new and emerging technologies and systems that are at the forefront of the vehicle design. You will apply a comprehensive knowledge of engineering principles to the solution of complex problems facing emerging vehicle technologies. Much of the knowledge will be at the forefront of the subject and informed by a critical awareness of new developments and the wider context of engineering. You will evaluate the environmental and societal issues facing the automotive industry and critically analyse potential solutions to these complex problems.

More information

KB7057 -

Interdisciplinary Project (40 Credits)

This module is the culmination of your degree programme; it provides an extended opportunity for you to bring together your specialist knowledge and skills within an industry or development-based project. You will work with the guidance of a tutor to direct your learning and develop your abilities in areas such as team planning and management, detailed design of the proposed method, prototype fabrication or virtual system modelling and critical evaluation and identification of further developments. You will be provided with the opportunity to demonstrate to potential future employers the breadth and depth of your ability by not only using your specialist abilities, but also through the demonstration of your planning, organisational and team working skills. You will be expected to incorporate unfamiliar knowledge as well as the wider social and environmental considerations of the engineering profession.

More information

KB7058 -

Future Materials (Core,20 Credits)

This module will investigate and evolve your understanding of smart and future materials and associated methods of manufacture. Much of the module will be at the forefront of the materials and manufacturing knowledge and informed by a critical awareness of new developments and the wider context of engineering and the impact on society. You will critically analyse topics such as those smart materials with the ability to change shape, self-heal and sense, new and emerging materials for extreme environments, materials and manufacturing methods for the circular economy, and manufacture for sustainability.

More information

KB7061 -

Sustainable Development for Engineering Practitioners (Core,20 Credits)

This module explores the fundamentals of sustainable and ethical development for engineering practitioners, considering the role and responsibility of the engineer within society. The module will consider the elements of sustainable development as they relate to decision making in engineering, for example, consideration of legislation, economics, energy, materials, environment, and society. The challenges engineering activities present society are examined, and ethical solutions for the future of our planet are sought through the use of various techniques and tools such as the triple bottom line, stakeholder analysis, the circular economy, carbon footprint, material and energy supply chains and risk. A rational argument for sustainable solutions will be presented using both qualitative and quantitative data sources and tools using a wide range of published literature and from students’ own experience.

More information

Modules

Module information is indicative and is reviewed annually therefore may be subject to change. Applicants will be informed if there are any changes.

KB4040 -

Engineering Analytics (Core,20 Credits)

You will learn to use a range of mathematical tools and techniques that you can apply to a wide variety of engineering activities. These skills and practices also underpin the use of more advanced engineering design and analysis tools, so gaining a good understanding of the basic principles now will help as your progress through this programme and enter the world of engineering. You will become familiar in working with formulae so that you can apply these skills within the engineering disciplines. You will learn techniques in algebra and trigonometry, such as those used by engineers to determine the shape, size, slope, mass etc. of objects and spaces as well as when and how objects will move or interact. These techniques are important to determine the unknown components in systems and are also applied to the solution of design and analysis problems. You will learn and apply the techniques of calculus, for example, those that enable you to determine how properties are changing in relation to time, as a result of changes in forces, or to calculate the quantity of work being done during a process. You will develop foundations in the skills required to apply these techniques using software tools as you progress towards more independent and complex engineering activities and prepare for entering an engineering workplace on graduation.

More information

KB4041 -

Materials & Manufacturing (Core,20 Credits)

This module introduces you to the subjects of materials and manufacturing within?the programme.?You will be introduced to how different types of materials are structured and their composition and ultimately how this influences their properties and behaviour. You will also explore how to make things using our practical workshop facilities using different methods and link appropriate manufacturing techniques to different types of materials. You will examine and consider the environmental and societal impact of material selection and different manufacturing approaches.

More information

KB4042 -

Applied Engineering Approaches 1 (Core,20 Credits)

In this module you will be presented with authentic engineering problems that have been derived and adapted from industrial problems to give you opportunities to explore ways to advance solutions as a developing professional engineer. It will, within the supportive environment offered by staff and your peers, allow you to develop your approach to resolving engineering problems that may involve research, experimentation, creativity and the acquisition and utilisation of new engineering skills. Well bounded problem definition will allow you to develop confidence in resolving problems with well-defined information and produce answers that might be considered appropriate based upon engineering judgement and perception associated with the problem. The problems encountered may be focussed within a specific subject theme but may still to some degree require the linking together of knowledge in several topics to derive acceptable solutions and valid resolutions from an engineering perspective.

More information

KB4043 -

Statics & Dynamics (Core,20 Credits)

This module covers the topics of statics and dynamics and introduces you to the fundamental concepts associated with the mechanics subject within the programme. Statics and dynamics describes and characterises how physical bodies behave, move and interact due to external influences. Everyday engineering phenomena will be contextualised through the constraints of fundamental physical laws and relationships. These concepts, such as kinematics, kinetics, structural members and different types of loading, and stress and strain will be applied to solve well-defined engineering problems using appropriate and conventional approaches. You will also learn how to select and apply appropriate experimental methods, analytical tools and computational techniques to characterise and model well-defined static and dynamic problems.

More information

KB4044 -

Thermodynamics (Core,20 Credits)

This module introduces you to the subject of fluids and energy within the programme and covers the topic of thermodynamics. You will apply knowledge and understanding of scientific principles and methodology to solve well-defined thermodynamics problems. You will explore the fundamental concepts of heat, work, and temperature and their relationships with energy, radiation, and physical properties. Analytical and computational tools will be used to model well-defined thermodynamics problems, and you will be encouraged to show creativity during problem-solving activities.

More information

KB4045 -

Applied Engineering Approaches 2 (Core,20 Credits)

The inclusion of this application focussed module in your studies will build on Applied Engineering Approaches I by allowing you to expand the areas of investigation and further develop your problem-solving, teamwork and communication skills. In this module, you will be presented with authentic engineering problems that have been derived and adapted from industrial problems to give you opportunities to explore ways to advance solutions as a developing professional engineer. It will, within the supportive environment offered by staff and your peers, allow you to develop your approach to resolving engineering problems that may involve research, experimentation, creativity and the acquisition and utilisation of new engineering skills. Well bounded problem definition will allow you to develop confidence in resolving problems with well-defined information and produce answers that might be considered appropriate based upon engineering judgement and perception associated with the problem. The problems encountered may be focussed within a specific subject theme but may still to some degree require the linking together of knowledge in several topics to derive acceptable solutions and valid resolutions from an engineering perspective.

More information

KB5031 -

Academic Language Skills for Mechanical and Construction Engineering (Core – for International and EU students only,0 Credits)

Academic skills when studying away from your home country can differ due to cultural and language differences in teaching and assessment practices. This module is designed to support your transition in the use and practice of technical language and subject specific skills around assessments and teaching provision in your chosen subject. The overall aim of this module is to develop your abilities to read and study effectively for academic purposes; to develop your skills in analysing and using source material in seminars and academic writing and to develop your use and application of language and communications skills to a higher level.

The topics you will cover on the module include:

• Understanding assignment briefs and exam questions.
• Developing academic writing skills, including citation, paraphrasing, and summarising.
• Practising ‘critical reading’ and ‘critical writing’
• Planning and structuring academic assignments (e.g. essays, reports and presentations).
• Avoiding academic misconduct and gaining credit by using academic sources and referencing effectively.
• Listening skills for lectures.
• Speaking in seminar presentations.
• Presenting your ideas
• Giving discipline-related academic presentations, experiencing peer observation, and receiving formative feedback.
• Speed reading techniques.
• Developing self-reflection skills.

More information

KB5030 -

Preparing for Placement (Optional,0 Credits)

You will learn to apply for a 12 month placement in a construction engineering company. You will do this through developing and improving your skills in the following areas:

1. Communication
2. CVs
3. Interviews
4. H&S within the workplace
5. Professional conduct
6. Teams
7. Constructing a Learning Plan
8. Evidencing your learning
9. Reflection in the workplace
10. Networking

More information

KB5031 -

Academic Language Skills for Mechanical and Construction Engineering (Core – for International and EU students only,0 Credits)

Academic skills when studying away from your home country can differ due to cultural and language differences in teaching and assessment practices. This module is designed to support your transition in the use and practice of technical language and subject specific skills around assessments and teaching provision in your chosen subject. The overall aim of this module is to develop your abilities to read and study effectively for academic purposes; to develop your skills in analysing and using source material in seminars and academic writing and to develop your use and application of language and communications skills to a higher level.

The topics you will cover on the module include:

• Understanding assignment briefs and exam questions.
• Developing academic writing skills, including citation, paraphrasing, and summarising.
• Practising ‘critical reading’ and ‘critical writing’
• Planning and structuring academic assignments (e.g. essays, reports and presentations).
• Avoiding academic misconduct and gaining credit by using academic sources and referencing effectively.
• Listening skills for lectures.
• Speaking in seminar presentations.
• Presenting your ideas
• Giving discipline-related academic presentations, experiencing peer observation, and receiving formative feedback.
• Speed reading techniques.
• Developing self-reflection skills.

More information

KB5034 -

Mechanics and Finite Element Analysis (Core,20 Credits)

This module provides the opportunity to build on fundamental statics and materials knowledge and further examine applied mechanics with a focus on the development of more in-depth modelling approaches that provide more detail and insight into the behaviour of materials. You will analyse mechanics concepts such as stress and strain transformations, shear stresses in beams and thin-walled structures to the solution of more broadly defined problems where there is some degree of uncertainty in their definition. Finite element analysis, a computational technique, will be used in the analysis and design of mechanical structures, components and systems and compared to complementary experimental and analytical approaches that can be used to underpin, verify and interpret simulation results.

More information

KB5036 -

Integrative Engineering Approaches 1 (Core,20 Credits)

In this module you will be presented with authentic engineering problems that have been derived and adapted from industrial examples to give you opportunities to explore ways to advance solutions as a developing professional engineer. It will, within the supportive environment offered by staff and your peers, allow you to develop your approach to resolving engineering problems that may involve research, experimentation, creativity and the acquisition and utilisation of new engineering skills. The incorporation of a greater degree of uncertainty in the problem definition will allow you to develop confidence in resolving problems with incomplete information and several solutions that might be considered appropriate based upon engineering judgement and perception associated with the problem. The problems encountered may span several subject areas and require the linking together of knowledge in these topics to derive acceptable solutions and valid resolutions from an engineering perspective.

More information

KB5037 -

Engineering Project Management (Core,20 Credits)

In this module you will learn about project management methodologies and their selection, application and use within the context of mechanical engineering projects. This will include the appropriate use of project management tools and software systems to gain insight into how an engineering project might be approached and managed concerning the attainment of successful completion of objectives including the utilisation of resources and other commercial considerations. Other relevant and important factors such as ethical, sustainable, societal and professional responsibilities that are pertinent to project management activity within the field of mechanical engineering will also be explored in the module.

More information

KB5039 -

Integrative Engineering Approaches 2 (Core,20 Credits)

The inclusion of this application focussed module in your studies will build on Integrative Engineering Approaches I by allowing you to expand the areas of investigation and further develop your problem-solving, teamwork and communication skills.

In this module, you will be presented with authentic engineering problems that have been derived and adapted from industrial scenarios to
give you opportunities to explore ways to advance solutions as a developing professional engineer. It will, within the supportive environment offered by staff and your peers, allow you to develop your approach to resolving engineering problems that may involve research, experimentation, creativity and the acquisition and utilisation of new engineering skills. The incorporation of a greater degree of uncertainty in the problem definition will allow you to develop confidence in resolving problems with incomplete information and several solutions that might be considered appropriate based upon engineering judgement and perception associated with the problem. The problems encountered may span several subject areas and require the linking together of knowledge in these topics to derive acceptable solutions and valid resolutions from an engineering perspective.

More information

KB5040 -

Automotive Engineering Design (Core,20 Credits)

In this module you will learn about the application of automotive engineering design methodologies and their selection and use within the context of automotive design problems. Vehicle design problems incorporate specific and unique issues that are driven by the need to provide safe, sustainable and performance solutions that can deliver transport systems fit for the future. This will include the appropriate use of engineering tools and analytical approaches to the solution of engineering design issues whilst ensuring that issues relating to customer needs and associated aspects such as the societal impact of engineering activity are considered to a suitable degree as would be expected of a professional automotive engineer.

More information

KB5041 -

Automotive Fluids & Energy (Core,20 Credits)

This module gives you opportunities to build on fundamental thermodynamic knowledge and examine practical and applied fluid flow and energy systems associated with vehicles, including the areas associated with different types of flow and how they may influence automotive engineering considerations, as well as energy conversion systems. The changes and challenges associated with a move from fossil fuels to providing a more sustainable energy future are also explored in this module and how this may influence automotive development. Based upon the application of relevant mathematical and engineering principles you will use analytical and computational techniques to solve problems associated with vehicle fluid flows and energy systems that have some limited degree of uncertainty in their definition. By addressing such issues using an informed and skilled engineering approach incorporating creativity and curiosity, you will be able to derive substantiated conclusions as a result of your investigations.

More information

KB5031 -

Academic Language Skills for Mechanical and Construction Engineering (Core – for International and EU students only,0 Credits)

Academic skills when studying away from your home country can differ due to cultural and language differences in teaching and assessment practices. This module is designed to support your transition in the use and practice of technical language and subject specific skills around assessments and teaching provision in your chosen subject. The overall aim of this module is to develop your abilities to read and study effectively for academic purposes; to develop your skills in analysing and using source material in seminars and academic writing and to develop your use and application of language and communications skills to a higher level.

The topics you will cover on the module include:

• Understanding assignment briefs and exam questions.
• Developing academic writing skills, including citation, paraphrasing, and summarising.
• Practising ‘critical reading’ and ‘critical writing’
• Planning and structuring academic assignments (e.g. essays, reports and presentations).
• Avoiding academic misconduct and gaining credit by using academic sources and referencing effectively.
• Listening skills for lectures.
• Speaking in seminar presentations.
• Presenting your ideas
• Giving discipline-related academic presentations, experiencing peer observation, and receiving formative feedback.
• Speed reading techniques.
• Developing self-reflection skills.

More information

KB5048 -

Work Placement Year (Optional,120 Credits)

You will learn lifelong technical and communication skills in a commercial work environment enabling you to practice your engineering skills in a nurturing and supportive environment. None technical skills such as team working, clear and precise communication, responsibility and creative thinking will be developed alongside technical and commercial knowledge of your chosen field to generate creative, sustainable solutions.

You will be able to use the placement experience to develop and enhance appropriate areas of your knowledge and understanding, your intellectual and professional skills, and your value attributes, relevant to your programme of study. Due to its overall positive impact on employability, degree classification and graduate starting salaries, the University strongly encourages you to pursue a work placement as part of your degree programme.

This module is a Pass/Fail module so does not contribute to the classification of your degree. When taken and passed, however, the Placement Year is recognised both in your transcript as a 120 credit Work Placement Module and on your degree certificate.

Your placement period will normally be full-time and must total a minimum of 40 weeks.

More information

KB5049 -

Study abroad year (Optional,120 Credits)

This module is designed for all standard full-time undergraduate programmes within the Faculty of Engineering and Environment and provides you with the option to study abroad for one full year as part of your programme.

This is a 120 credit module which is available between Levels 5 and 6. You will undertake a year of study abroad at an approved partner University where you will have access to modules from your discipline, but taught in a different learning culture. This gives you the opportunity to broaden your overall experience of learning. The structure of study will be dependent on the partner and will be recorded for an individual student on the learning agreement signed by the host University, the student, and the home University (Northumbria).

Your study abroad year will be assessed on a pass/fail basis. It will not count towards your final degree classification but, it is recognised in your transcript as a 120 credit Study Abroad module and on your degree certificate in the format – “Degree title (with Study Abroad Year)”.

More information

KB5031 -

Academic Language Skills for Mechanical and Construction Engineering (Core – for International and EU students only,0 Credits)

Academic skills when studying away from your home country can differ due to cultural and language differences in teaching and assessment practices. This module is designed to support your transition in the use and practice of technical language and subject specific skills around assessments and teaching provision in your chosen subject. The overall aim of this module is to develop your abilities to read and study effectively for academic purposes; to develop your skills in analysing and using source material in seminars and academic writing and to develop your use and application of language and communications skills to a higher level.

The topics you will cover on the module include:

• Understanding assignment briefs and exam questions.
• Developing academic writing skills, including citation, paraphrasing, and summarising.
• Practising ‘critical reading’ and ‘critical writing’
• Planning and structuring academic assignments (e.g. essays, reports and presentations).
• Avoiding academic misconduct and gaining credit by using academic sources and referencing effectively.
• Listening skills for lectures.
• Speaking in seminar presentations.
• Presenting your ideas
• Giving discipline-related academic presentations, experiencing peer observation, and receiving formative feedback.
• Speed reading techniques.
• Developing self-reflection skills.

More information

KB6054 -

Professional Engineering Futures (Core,20 Credits)

This module will allow you to explore what it means to be a professional engineer and the various options and opportunities open to you as a developing professional who may be contributing to the furtherment of mechanical engineering in the very near future. Exploring aspects such as the various subject areas and developing themes within mechanical engineering that may allow you to tailor your career aspirations as you graduate, as well as looking at alternative career options, this module will assist you to reflect upon your development to date and consider where you may ultimately wish to direct your career and some of the things that you might do to try and get there. Consideration will be given to the nature, types and sizes of organisations, their various stakeholders, and the different roles engineering has within different organisations. Through contemplation of prospective roles within such organisations and how you may direct your individual professional development, you will develop a roadmap to help you progress your future career based upon the development of core professional values and competencies.

More information

KB6058 -

Automation and Mechatronics (Optional,20 Credits)

This module introduces and explores the various aspects and technologies of industrial automation systems, such as robotic devices, and the appropriate mechanical engineering considerations associated with their design, selection and use. The module will establish competence in the application of automation systems and component selection and their integration that is integral to the specification and operation of such systems in a range of different scenarios. The module will develop the ability to select and use such systems safely and in ways that may be related to organisational aims such as quality, efficiency and output and consider relevant technical areas such as fixed and flexible automation systems, machine control (including programming) and sensor characterisation, selection and integration.

More information

KB6059 -

Global Design Challenges (Optional,20 Credits)

This module allows you to develop your design skills and knowledge through their application to addressing acknowledged global design challenges and problems. It will involve the consideration, selection and application of suitable design methodologies, approaches and techniques that are appropriate to the design problem posed. Problems within the module will be identified as having a significant impact on society (in a global context) that would benefit from the derivation of engineering design solutions within the remit of mechanical engineering subject areas. Key activities based upon design thinking and approaches, sound problem research and its translation into design requirements, through the implementation of scientific and engineering principles will be used to solve complex design problems within an environment that represents an authentic engineering design team and communication of the design results. Professional engineering considerations, such as sustainability and economics, will be some of the factors integral to the process of deriving a solution. They will necessitate a systematic and considered approach to the problem which will be supported by evidenced practical demonstration of design outcome suitability.

More information

KB6060 -

Investigative Project (40 Credits)

You will learn about and demonstrate how to apply the knowledge and skills developed earlier and concurrently in your degree programme whilst also extending your independent learning through a deep investigation of a topic, which may be of your own choice. You will develop your ability to plan, direct, progress and take responsibility for your large scale investigative project. You may be involved in the choice of the topic of your investigation and be able to lead the direction of the investigation under the guidance of a supervisor. Your investigation will be technical in nature, draw upon a broad range of existing engineering knowledge and practice, apply advanced engineering techniques and analysis, draw your verifiable conclusions supported by your findings and enable you to communicate your outcomes and conclusions in a professional manner.

More information

KB6061 -

Vehicle Dynamics and Control (Core,20 Credits)

Vehicle dynamics and control will combine knowledge, understanding, and practical application within the subject of mechanics to tackle complex engineering problems. You will investigate how the field of control theory is used to measure and regulate vibrating mechanical systems, and the impact such motions have on vehicle performance. Advanced techniques and tools will be blended with the methodologies practised in previous years to facilitate investigation into complex dynamics-based problems where independence and creativity are encouraged to explore and critically evaluate potential solutions to more open-ended challenges. Analytical, computational, and experimental techniques will be considered and applied to reach substantiated conclusions.

More information

KB6062 -

Drive Cycles and Performance Modelling (Optional,20 Credits)

You will build upon your knowledge of engineering science to develop an understanding of how the legislation relating to vehicle emissions and fuel economy are applied to the drive cycles and the technologies that contribute to the reduction of harmful emissions. Using this information, you will develop a computational model to predict the performance of a passenger car around a drive cycle that relates to an international standard. The specific engineering principles and technologies that provide the foundation for the design and analysis of a high-performance racing car and their application will be explored and advanced to develop computational models to predict lap times of a vehicle around a circuit.

More information

KB6063 -

Vehicle Aerodynamics (Optional,20 Credits)

Aerodynamics is the study of airflow around objects. This can be applied to the improvement of external and internal effects, such as reducing drag, improving downforce on a vehicle, and controlling the flow of air to provide ventilation and cooling of vehicle systems. This module facilitates the development of your capabilities in the appraisal of engineering principles associated with vehicle fluid dynamics and in particular the subject of aerodynamics. Expanding your use of analytical and computational methods to explore these subjects you will investigate typical automotive areas such as wing theory and design. You will apply and interpret theoretical formulations to practical engineering problems associated with the design, construction, function and efficiency of wings and aerodynamics features associated with automotive vehicles.

More information

KB5031 -

Academic Language Skills for Mechanical and Construction Engineering (Core – for International and EU students only,0 Credits)

Academic skills when studying away from your home country can differ due to cultural and language differences in teaching and assessment practices. This module is designed to support your transition in the use and practice of technical language and subject specific skills around assessments and teaching provision in your chosen subject. The overall aim of this module is to develop your abilities to read and study effectively for academic purposes; to develop your skills in analysing and using source material in seminars and academic writing and to develop your use and application of language and communications skills to a higher level.

The topics you will cover on the module include:

• Understanding assignment briefs and exam questions.
• Developing academic writing skills, including citation, paraphrasing, and summarising.
• Practising ‘critical reading’ and ‘critical writing’
• Planning and structuring academic assignments (e.g. essays, reports and presentations).
• Avoiding academic misconduct and gaining credit by using academic sources and referencing effectively.
• Listening skills for lectures.
• Speaking in seminar presentations.
• Presenting your ideas
• Giving discipline-related academic presentations, experiencing peer observation, and receiving formative feedback.
• Speed reading techniques.
• Developing self-reflection skills.

More information

KB7054 -

Intelligent Transport Systems (Core,20 Credits)

Intelligent transport systems investigate the interconnected world and how this is leveraged to create smarter, safer, and more efficient transport infrastructure. In this module, you will apply comprehensive knowledge of engineering principles to the solution of complex transport problems facing the modern world. Much of this knowledge will be at the forefront of current understanding, and you will demonstrate a critical awareness of new developments and the wider context of engineering. You will select and apply appropriate analytical and computational techniques to model complex problems, discussing the limitations of these approaches within the context of transport infrastructure.

More information

KB7055 -

Smart and Future Vehicles (Core,20 Credits)

You will learn about new and emerging technologies and systems that are at the forefront of the vehicle design. You will apply a comprehensive knowledge of engineering principles to the solution of complex problems facing emerging vehicle technologies. Much of the knowledge will be at the forefront of the subject and informed by a critical awareness of new developments and the wider context of engineering. You will evaluate the environmental and societal issues facing the automotive industry and critically analyse potential solutions to these complex problems.

More information

KB7057 -

Interdisciplinary Project (40 Credits)

This module is the culmination of your degree programme; it provides an extended opportunity for you to bring together your specialist knowledge and skills within an industry or development-based project. You will work with the guidance of a tutor to direct your learning and develop your abilities in areas such as team planning and management, detailed design of the proposed method, prototype fabrication or virtual system modelling and critical evaluation and identification of further developments. You will be provided with the opportunity to demonstrate to potential future employers the breadth and depth of your ability by not only using your specialist abilities, but also through the demonstration of your planning, organisational and team working skills. You will be expected to incorporate unfamiliar knowledge as well as the wider social and environmental considerations of the engineering profession.

More information

KB7058 -

Future Materials (Core,20 Credits)

This module will investigate and evolve your understanding of smart and future materials and associated methods of manufacture. Much of the module will be at the forefront of the materials and manufacturing knowledge and informed by a critical awareness of new developments and the wider context of engineering and the impact on society. You will critically analyse topics such as those smart materials with the ability to change shape, self-heal and sense, new and emerging materials for extreme environments, materials and manufacturing methods for the circular economy, and manufacture for sustainability.

More information

KB7061 -

Sustainable Development for Engineering Practitioners (Core,20 Credits)

This module explores the fundamentals of sustainable and ethical development for engineering practitioners, considering the role and responsibility of the engineer within society. The module will consider the elements of sustainable development as they relate to decision making in engineering, for example, consideration of legislation, economics, energy, materials, environment, and society. The challenges engineering activities present society are examined, and ethical solutions for the future of our planet are sought through the use of various techniques and tools such as the triple bottom line, stakeholder analysis, the circular economy, carbon footprint, material and energy supply chains and risk. A rational argument for sustainable solutions will be presented using both qualitative and quantitative data sources and tools using a wide range of published literature and from students’ own experience.

More information

To start your application, simply select the month you would like to start your course.

Automotive Engineering MEng (Hons)

Home or EU applicants please apply through UCAS

International applicants please apply using the links below

START MONTH
YEAR

UniStats

Any Questions?

Our Applicant Services team will be happy to help.  They can be contacted on 0191 406 0901 or by using our Contact Form.



Accessibility and Student Inclusion

Northumbria University is committed to developing an inclusive, diverse and accessible campus and wider University community and are determined to ensure that opportunities we provide are open to all.

We are proud to work in partnership with AccessAble to provide Detailed Access Guides to our buildings and facilities across our City, Coach Lane and London Campuses. A Detailed Access Guide lets you know what access will be like when you visit somewhere. It looks at the route you will use getting in and what is available inside. All guides have Accessibility Symbols that give you a quick overview of what is available, and photographs to show you what to expect. The guides are produced by trained surveyors who visit our campuses annually to ensure you have trusted and accurate information.

You can use Northumbria’s AccessAble Guides anytime to check the accessibility of a building or facility and to plan your routes and journeys. Search by location, building or accessibility feature to find the information you need. 

We are dedicated to helping students who may require additional support during their student journey and offer 1-1 advice and guidance appropriate to individual requirements. If you feel you may need additional support you can find out more about what we offer here where you can also contact us with any questions you may have:

Accessibility support

Student Inclusion support




All information is accurate at the time of sharing. 

Full time Courses are primarily delivered via on-campus face to face learning but could include elements of online learning. Most courses run as planned and as promoted on our website and via our marketing materials, but if there are any substantial changes (as determined by the Competition and Markets Authority) to a course or there is the potential that course may be withdrawn, we will notify all affected applicants as soon as possible with advice and guidance regarding their options. It is also important to be aware that optional modules listed on course pages may be subject to change depending on uptake numbers each year.  

Contact time is subject to increase or decrease in line with possible restrictions imposed by the government or the University in the interest of maintaining the health and safety and wellbeing of students, staff, and visitors if this is deemed necessary in future.

 

Your Learning Experience

Find out about our distinctive approach at 
www.northumbria.ac.uk/exp

Admissions Terms and Conditions
northumbria.ac.uk/terms

Fees and Funding
northumbria.ac.uk/fees

Admissions Policy
northumbria.ac.uk/adpolicy

Admissions Complaints Policy
northumbria.ac.uk/complaints


If you’d like to receive the latest updates from Northumbria about our courses, events, finance & funding then enter your details below.

* At Northumbria we are strongly committed to protecting the privacy of personal data. To view the University’s Privacy Notice please click here

a sign in front of a crowd
+

Northumbria Open Days

Open Days are a great way for you to get a feel of the University, the city of Newcastle upon Tyne and the course(s) you are interested in.

a person sitting at a table using a laptop
+
NU World Virtual Tours
+

Virtual Tour

Get an insight into life at Northumbria at the click of a button! Come and explore our videos and 360 panoramas to immerse yourself in our campuses and get a feel for what it is like studying here using our interactive virtual tour.

Back to top