KB6056 - Mechanics of Continuous Systems

What will I learn on this module?

The mechanics of continuous systems will unify your knowledge, understanding, and practical abilities within the subject of mechanics to tackle complex engineering problems. Advanced techniques and tools will be blended with the methodologies practised at previous levels to facilitate investigation into complex mechanics-based problems where independence and creativity is essential to explore and critically evaluate potential solutions to more open-ended challenges. Analytical, computational, and experimental techniques will be considered, applied and judged to reach substantiated conclusions related to increasingly complex problems including greater degrees of freedom and integration of multiple system components.

How will I learn on this module?

Active learning sessions will allow you to engage with and appraise advanced material and assist you in exploring and critiquing key concepts and topics within the module. Sessions will involve a combination of content delivery and practical learning exercises to enable you to apply your learning to complex and authentic engineering problems. A problem-solving focused curriculum will allow you to explore and analyse solutions to complex challenges where wide-ranging and conflicting constraints require innovative discovery and enterprise. Learning activities will enable students to work collaboratively and practice and reflect upon the effectiveness of teamwork and communication skills, and the facilitation of creative thinking approaches to solve open-ended engineering problems.

How will I be supported academically on this module?

During your active learning sessions, academic support will be available to facilitate your exploration of the problem-solving activities. Formative feedback will be provided by the module team, including answering student queries and providing guidance concerning the module such as assessments and your academic progress. The electronic learning platform (eLP) provides a comprehensive resource for integrated learning incorporating learning materials and reading lists that will facilitate directed and self-directed learning. Contact with academic tutors and your peers outside formal teaching hours is encouraged through dedicated ‘office hours’, discussion boards and messaging systems within the eLP. Professional support staff, such as Ask4Help, provide the first point of contact for a range of queries, including, for example, those concerning assessment submission, late submission/extensions, and other administrative issues.

What will I be expected to read on this module?

All modules at Northumbria include a range of reading materials that students are expected to engage with. The reading list for this module can be found at: http://readinglists.northumbria.ac.uk
(Reading List service online guide for academic staff this containing contact details for the Reading List team – http://library.northumbria.ac.uk/readinglists)

What will I be expected to achieve?

Knowledge & Understanding:
MLO1. Evaluate knowledge of mathematics, statistics, natural science and engineering principles to the solution of complex problems. Some of the knowledge will be at the forefront of the mechanics of materials subject.

Intellectual / Professional skills & abilities:
MLO2. Select and apply appropriate computational and analytical techniques to model complex problems, recognising the limitations of the techniques employed.

MLO3. Appraise practical laboratory and workshop skills to investigate complex mechanics problems.


Personal Values Attributes (Global / Cultural awareness, Ethics, Curiosity) (PVA):
MLO4. Apply creativity and curiosity to design solutions to complex and continuous mechanics-based problems to reach substantiated conclusions that can be defended by first principles of mathematics, statistics, natural science and engineering principles.

How will I be assessed?

Formative Assessment
Academic staff on the module will assess you in a formative manner to help build your confidence and highlight any misunderstandings you may have of the theoretical and professional concepts presented in the module. Your formative feedback will be given to you either verbally by academic staff on the module during formally scheduled teaching sessions or using the eLP. Your formative feedback aims to help you learn and prepare for the submission of your summative assessment.

Summative Assessment
Academic staff on the module will assess you in a summative manner by two pieces of assessment:
Component 1 to assess your knowledge and understanding, practical and theoretical, of computational and analytical techniques, to model and recognise their limitations in complex mechanics problems (MLOs 1-3 through completing an industry compatible written submission.
Component 2, a timed electronic exam (competency-based challenge task), is used to evaluate your ability to apply creativity and curiosity to design solutions reaching substantiated conclusions that can be defended from engineering principles, (MLO 4).

Feedback will be provided electronically through the eLP or student email within 20 working days of the date of submission.

Pre-requisite(s)

N/A

Co-requisite(s)

N/A

Module abstract

The mechanics of continuous systems will unify your knowledge, understanding, and practical abilities within the subject of mechanics to tackle complex engineering problems. Advanced techniques and tools will be blended with the methodologies practised in earlier study to facilitate investigation into complex mechanics-based problems where independence and creativity are essential to explore and critically evaluate potential solutions to more open-ended challenges. Analytical, computational, and experimental techniques will be considered, applied and judged to reach substantiated conclusions concerning increasingly complex problems including greater degrees of freedom and integration of multiple system components. Active learning sessions will allow you to engage with and appraise elevated material and assist you in exploring and critiquing key concepts and topics within the module. Sessions will involve practical learning exercises to enable you to apply your learning to complex and authentic engineering problems. The module utilises the electronic learning platform to provide a comprehensive resource for integrated learning incorporating learning materials and reading lists that will facilitate directed and self-directed learning.

Course info

UCAS Code H314

Credits 20

Level of Study Undergraduate

Mode of Study 4 years full-time or 5 years with a placement (sandwich)/study abroad

Department Mechanical and Construction Engineering

Location City Campus, Northumbria University

City Newcastle

Start September 2024 or September 2025

Fee Information

Module Information

All information is accurate at the time of sharing. 

Full time Courses are primarily delivered via on-campus face to face learning but could include elements of online learning. Most courses run as planned and as promoted on our website and via our marketing materials, but if there are any substantial changes (as determined by the Competition and Markets Authority) to a course or there is the potential that course may be withdrawn, we will notify all affected applicants as soon as possible with advice and guidance regarding their options. It is also important to be aware that optional modules listed on course pages may be subject to change depending on uptake numbers each year.  

Contact time is subject to increase or decrease in line with possible restrictions imposed by the government or the University in the interest of maintaining the health and safety and wellbeing of students, staff, and visitors if this is deemed necessary in future.

 

Useful Links

Find out about our distinctive approach at 
www.northumbria.ac.uk/exp

Admissions Terms and Conditions
northumbria.ac.uk/terms

Fees and Funding
northumbria.ac.uk/fees

Admissions Policy
northumbria.ac.uk/adpolicy

Admissions Complaints Policy
northumbria.ac.uk/complaints