Skip navigation

Emrah Haspolat

Postgraduate Research

Emrah -haspolatQuantitative mathematical models have an essential place in GRNs to obtain the functions for the complex network systems. Dynamics of GRNs can be quantitatively modelled by differential equations to capture the behaviour of gene expression.

Flowering time regulation that has been widely examined in the plant model species – Arabidopsis thaliana, has a large complex network system. A quantitative approach provides to understand the numerical amount of genes impact strength in each other. Therefore, a quantitative and dynamic modelling of this network based on a system of differential equations is required.

Research interest;

Dynamic modelling of the Arabidopsis thaliana flowering time gene regulation.

An efficient set of parameters for the dynamics of Arabidopsis thaliana flowering time GRN by using an ODE identification (ODEion) method with (no-delay and delay), and compared with the polynomial fitting experimental expression time-course data.

Stability analysis of simplified model.

Analytical and numerical solutions of the dynamic model.

Supervisors

  • Prof. Maia Angelova
  • Dr. Benoit Huard

 


Latest News and Features

One year after Northumbria University was announced as the lead research partner on the 2026 State of the World's Volunteerism Report (SWVR) produced by United Nations Volunteers (UNV), the publication has been launched in New York on International Volunteer Day, 5 December.
Glasgow SEC
Northumbria University Graphic Design student, Adam Graham, with Director of Converge Northumbria, Ally Hunter-Byron.
Northumbria Campus at night
Four Northumbria University academics
Dan Burn NUFC and Eddie Howe NUFC Head Coach
More news
More events

Upcoming events

Northumbria University Carol Service 2025
Collaborating for Capability: Shaping the Future of Supply Chain Talent
Viruses of Microbes-UK (VoM-UK) Conference 2026
-
Back to top