Skip navigation

Enter your details to receive an email with a link to a downloadable PDF of this course and to receive the latest news and information from Northumbria University

* By submitting your information you are consenting to your data being processed by Northumbria University (as Data Controller) and Campus Management Corp. (acting as Data Processor). To see the University's privacy policy please click here

CLOSE

Are you interested in working in the electrical power engineering and renewable energy sectors? This course will give you a thorough understanding of power electronics, electric drive systems, smart grids, wind power, photovoltaic and other distributed generation systems.

The course, which enjoys very high student satisfaction rates, has been carefully designed to meet the needs of industry. It also meets the academic requirements of the Institution of Engineering and Technology (IET), by whom it is fully accredited.

Electrical power engineers need to be able to work in multidisciplinary teams and to show organisational and commercial skills alongside technical knowledge. The course therefore has a strong focus on project management, self-development and employability.

You’ll benefit from the University’s excellent facilities that include specialist electrical and electronics laboratory resources. Northumbria has a well-established reputation for producing graduates who can apply their knowledge to generate creative solutions for sustainable electrical power systems.

Accredited by the Institution of Engineering and Technology (IET) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

 

 

Are you interested in working in the electrical power engineering and renewable energy sectors? This course will give you a thorough understanding of power electronics, electric drive systems, smart grids, wind power, photovoltaic and other distributed generation systems.

The course, which enjoys very high student satisfaction rates, has been carefully designed to meet the needs of industry. It also meets the academic requirements of the Institution of Engineering and Technology (IET), by whom it is fully accredited.

Electrical power engineers need to be able to work in multidisciplinary teams and to show organisational and commercial skills alongside technical knowledge. The course therefore has a strong focus on project management, self-development and employability.

You’ll benefit from the University’s excellent facilities that include specialist electrical and electronics laboratory resources. Northumbria has a well-established reputation for producing graduates who can apply their knowledge to generate creative solutions for sustainable electrical power systems.

Accredited by the Institution of Engineering and Technology (IET) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

 

 

Course Information

Level of Study
Postgraduate

Mode of Study
12 months full-time
2 other options available

Department
Mathematics, Physics and Electrical Engineering

Location
Ellison Building, Newcastle City Campus

City
Newcastle

Start
September 2019

Book an Open Day / Experience Electrical Power Engineering

Visit an Open Day to really get an inside view of what it's like to study Electrical Power Engineering at Northumbria. Speak to staff and students from the course and discover your funding options.

Our teaching methods include lectures, seminars, laboratory sessions, computer workshops, individual tutorials, and group projects. As this is a master’s course there is a significant element of independent learning and self-motivated reflection.

You’ll undertake a practical or theoretical master’s dissertation that will hone your skills in evaluating and applying research techniques and methodologies.

Assessments are designed to give feedback as well as to monitor your level of achievement. The assessed projects will enable you to test your skills in ways that relate to current industrial practice. Specific assessment methods include assignments, exams, technical reports and presentations.

Book an Open Day / Experience Electrical Power Engineering

Visit an Open Day to really get an inside view of what it's like to study Electrical Power Engineering at Northumbria. Speak to staff and students from the course and discover your funding options.

Our teaching team includes experts from the Northumbria Photovoltaics Application Centre (NPAC) and Power and Wind Energy Research (PaWER) group. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent (Research Excellence Framework 2014).

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. Our industrial links help inform our curriculums and ensure a variety of site visits and input from practitioners via guest lectures.

Teaching Staff / Profiles

Book an Open Day / Experience Electrical Power Engineering

Visit an Open Day to really get an inside view of what it's like to study Electrical Power Engineering at Northumbria. Speak to staff and students from the course and discover your funding options.

Northumbria University provides outstanding facilities for electrical power engineering. Our laboratories have equipment that includes oscilloscopes, signal generators and Labview software as well as National Instruments Educational Laboratory Virtual Instrumentation Suite (NI ELVIS) to measure and control signal voltages.

Our New and Renewable Energy Laboratory is an excellent resource for research into power networks, wind energy, photovoltaics and battery testing for electric vehicles. All our facilities are backed up by a team of technicians who will give support and advice when you need it.

Technology Enhanced Learning (TEL) is embedded throughout the course with tools such as the ‘Blackboard’ eLearning Portal and electronic reading lists that will guide your preparation for seminars and independent research. Our use of lecture capture software will help you revise challenging material.

To facilitate group projects there is a working space called The Hub that’s well equipped for meetings and working with IT. The Zone is another area that’s popular with students undertaking group work or individual study.

Facilities / Department of Maths, Physics and Electrical Engineering

Book an Open Day / Experience Electrical Power Engineering

Visit an Open Day to really get an inside view of what it's like to study Electrical Power Engineering at Northumbria. Speak to staff and students from the course and discover your funding options.

Northumbria’s strong research ethos is an essential aspect of how you will develop as a critical, reflective and independent thinker. With our problem-solving approach you’ll acquire a wide range of research and analytical skills as you progress through the course. These skills will come together in the practical/theoretical dissertation that you’ll undertake, which will require independent research and appropriate techniques of inquiry, critical evaluation and synthesis.

Throughout the course your learning will be directly impacted by the teaching team’s active research. Our specialist interests include electrical and electronic engineering, mobile communication, microelectronic, renewable and sustainable energy technologies, and advanced materials.

 

Research / Department of Maths, Physics and Electrical Power Engineering

Book an Open Day / Experience Electrical Power Enginering

Visit an Open Day to really get an inside view of what it's like to study Electrical Power Engineering at Northumbria. Speak to staff and students from the course and discover your funding options.

The course will equip you with the knowledge and skills you’ll need to work in the electrical power engineering and renewable energy sectors. At the same time you’ll develop transferable key skills and personal attributes that promote employability and lifelong learning.

The group projects will provide experience of working with others while also raising your awareness of commercial considerations and how industry operates. One project involves the development of an innovative product that must satisfy pre-determined criteria including a realistic business model.

Your dissertation can be linked to the University’s on-going research, giving you experience of being incorporated into a pre-existing working team and environment. Alternatively you can undertake a practice-based dissertation that’s linked to a project that you’ve chosen for its relevance to your interests, self-development and career prospects.

When it comes to applying for jobs our Careers and Employment Service offers resources and support that will help you find roles matching your interests and skills. You will be able to access a range of workshops, one-to-one advice, and networking opportunities.

Book an Open Day / Experience Electrical Power Engineering

Visit an Open Day to really get an inside view of what it's like to study Electrical Power Engineering at Northumbria. Speak to staff and students from the course and discover your funding options.

By the end of this course you’ll be in an excellent position to start or continue a career in electrical power engineering and/or the renewable energy industry. Roles could include designing, developing and maintaining electrical control systems and components.

You could also undertake a postgraduate research degree such as an MPhil, PhD and Professional Doctorate. If you decide to start up your own business, it’s good to know that the combined turnover of our graduates’ start-up companies is higher than that of any other UK university.

Whatever you decide to do, you will have the transferable skills that employers expect from a master’s graduate from Northumbria University. These include the ability to tackle complex issues through conceptualisation and undertaking research, the ability to contribute to new processes and knowledge, and the ability to formulate balanced judgements when considering incomplete or ambiguous data.

Book an Open Day / Experience Elctrical Power Engineering

Visit an Open Day to really get an inside view of what it's like to study Electrical Power Engineering at Northumbria. Speak to staff and students from the course and discover your funding options.

Entry Requirements 2019/20

Standard Entry

Applicants should normally have:

A minimum of a 2:2 honours degree in Electrical Engineering with a focus on Electrical Power.

Applicants who do not have the above, but have relevant work experience and other qualifications, will be considered.

International qualifications:

If you have studied a non UK qualification, you can see how your qualifications compare to the standard entry criteria, by selecting the country that you received the qualification in, from our country pages. Visit http://www.northumbria.ac.uk/yourcountry%20

English Language requirements:

International applicants are required to have a minimum overall IELTS (Academic) score of 6.0 with 5.5 in each component (or approved equivalent*).

*The university accepts a large number of UK and International Qualifications in place of IELTS. You can find details of acceptable tests and the required grades you will need in our English Language section. Visit www.northumbria.ac.uk/englishqualifications

Fees and Funding 2019/20 Entry

Full UK Fee: £6,990

Full EU Fee: £6,990

Full International Fee: £15,000

ADDITIONAL COSTS

There are no Additional Costs

FUNDING INFORMATION

Click here for UK and EU Masters funding and scholarships information.

Click here for International Masters funding and scholarships information.

Click here for UK/EU Masters tuition fee information.

Click here for International Masters tuition fee information.

Click here for additional costs which may be involved while studying.

Click here for information on fee liability.

 

 

If you'd like to receive news and information from us in the future about the course or finance then please complete the below form

* By submitting your information you are consenting to your data being processed by Northumbria University (as Data Controller) and Campus Management Corp. (acting as Data Processor). To see the University's privacy policy please click here

Modules Overview

Modules

Module information is indicative and is reviewed annually therefore may be subject to change. Applicants will be informed if there are any changes.

KD7011 -

Wind Energy Conversion Systems (Core, 20 Credits)

In this module you will consider the current practices and technological advances in the design, control, mathematical modelling, and performance optimisation of modern Wind Energy Conversion Systems. You will gain the necessary knowledge and understanding of the main concepts, methodologies and future developments in this field. The module syllabus includes, but is not limited to, the following topics: wind energy resource; operating principles, characteristics and types of wind turbines; commercial and emerging distributed wind generators; power electronic converter topologies for variable speed systems; turbine aero-dynamics and manufacturing; grid-connected and stand-alone applications; research and development aspects; environmental and social context and issues; regulations and standards; economics, employment opportunities etc.

More information

KD7050 -

Photovoltaic System Technology (Core, 20 Credits)

In this module, you will learn about the principles of photovoltaic (PV) system, design, operation and application. This will include consideration of the system components and the design and configuration of the solar array, together with examples of stand-alone, grid-connected and space applications. The module will also help you to appreciate the issues relating to the implementation of photovoltaic systems.

The topics within the module syllabus include:
• PV arrays and system components
• Grid connected PV systems, including large scale and building integrated systems
• Stand-alone PV systems and applications
• Concentrator PV systems
• PV arrays for satellite power supply
• Monitoring and performance analysis
• Operation and maintenance, system lifetime, standards and regulations

More information

KD7065 -

MSc Engineering Project (Core, 60 Credits)

This module allows you to engender a spirit of enquiry and thirst for knowledge into a practical or theoretical dissertation. It includes aspects of information research, retrieval and critical appraisal; research enquiry based upon practical and theoretical skills development and critical discussion and appraisal of results; and an opportunity to compose a thesis or research style paper and to deliver a technical presentation on the project.

This module aims to make use of the knowledge and analytic skills developed throughout the programme to provide solutions to real-world industrial and research problems. In this module you will develop:

• Critical thinking on current engineering practices and their limitations, and exposure to state of the art technologies.

• Independent problem solving skills to develop and propose solutions to fundamental and subtle problems.

• An understanding and appreciation for the need and application of ethics within research and the wider society, and apply this in the context of the Engineering project undertaken.

• Project management skills to organise and plan tasks with clear objectives, outcomes and timescales, and analyse the true “cost” in order to achieve project outcomes.

• Key technical writing and presentation skills to a professional standard expected by both industry and academia.

These will provide a professional base from which you will be able to identify and use key knowledge, objectives, theories and techniques, plan and cost in order to bid, for funding, for future industrial and research projects. A key requirement of a professional engineer.

More information

KD7067 -

Engineering Research and Project Management (Core, 20 Credits)

The module aims to develop a critical appreciation of the various principles underlying research that will enable you to discuss, evaluate and apply a variety of research approaches, methods and techniques to an engineering problem. It will also prepare you to consider, evaluate and apply the key knowledge and skills that underpin the professional practice of project management in an engineering context. In addition the broader key skills of knowledge and awareness of other none discipline areas are developed. The curriculum is delivered using two main thematic areas, which are delivered concurrently - Research and Professional Engineering business practice. In the Research theme the nature and practice of research are developed, you will use the university Library facilities to access information and make critical judgement of the information in the context of the subject specialism. The Professional Engineering Business practice theme introduces you to the practice of approaching all projects / research professionally being aware of planning, management and costs.

A detailed breakdown of the themes are:

Research:
- Generic research skills, information literacy. Appropriate literature search strategies, evaluation, reviewing and analysis methods.
- Specifying objectives which are specific, realistic, measurable under the SMART acronym, Endnote software

Professional Engineering business practice:
- Project Management, planning, time estimation and workloads, Gantt charts, CPM and PERT. Managing change, Managing budgets and realistic costing, MS project
- Legal, ethical or social issues in research and business, Risk analysis, classification and risk handling strategies
- Propose a professional business plan for research funding or any other funding

More information

KD7068 -

Renewable Energy Technologies for Electricity Supply (Core, 20 Credits)

This module provides you with the opportunity to study the operation of the renewable energy technologies used for electricity generation, covering the aspects of resource assessment, operating characteristics, typical performance levels, economics and environmental impact. You will also consider the context of the use of renewable energy systems, including aspects relating to grid connection and enabling technologies such as storage.

The module introduces you to all the renewable technologies that can be used to generate electricity, including solar, water, wind, geothermal and biomass technologies.

More information

KD7069 -

Power Electronics and Drive Systems (Core, 20 Credits)

This module aims to provide you with thorough understanding and knowledge of existing and new concepts and technologies in electrical power engineering with emphasis on design and industrial applications of power electronics and electric motor drives. You will cover the principles of advanced control techniques as applied to these systems. The module is specifically concerned with the following subjects: power electronics devices and conventional converter topologies; pulse-width-modulation (PWM) techniques; state of the art practical switching power converters; power quality and harmonic analysis of various power conversion systems; power electronics control of renewable energy sources including solar, wind, and fuel-cell energy systems as well as electric and hybrid vehicles; electric machines and drives fundamentals; space-vector theory, control and applications of DC and AC drives; vector and field-oriented control of high performance induction and synchronous motor drives; applications and efficiency of electric drives; regulations, standards and other professional issues.

More information

KD7070 -

Smart Grids (Core, 20 Credits)

This module aims to deepen your understanding and ability to study existing electrical power distribution networks and to consider new concepts and technologies for future ‘smart grid’ power networks. Emphasis will be given to the integration of renewable energy resources, electric vehicles, enabling technologies and the quality of supply. The module also covers advanced power electronics controllers and ICT techniques as applied to the smart grid.

This module also gives you the opportunity to critically analyse and develop an understanding of practical design and implementation issues, such as, quality of supply, cost considerations, regulations and standards.

Topics covered will be reinforced by the use of real-world examples and case studies.

More information

KL7003 -

Academic Language Skills for Mathematics, Physics and Electrical Engineering (Optional, 0 Credits)

Academic skills when studying away from your home institution can differ due to cultural and language differences in teaching and assessment practices. This module is designed to support your transition in the use and practice of technical language and subject specific skills around assessments and teaching provision in your chosen subject area in the Department of Architecture and Built Environment. The overall aim of this module is to develop your abilities to read and study effectively for academic purposes; to develop your skills in analysing and using source material in seminars and academic writing and to develop your use and application of language and communications skills to a higher level.

The topics you will cover on the module include:

• Understanding assignment briefs and exam questions.
• Developing academic writing skills, including citation, paraphrasing, and summarising.
• Practising ‘critical reading’ and ‘critical writing’.
• Planning and structuring academic assignments (e.g. essays, reports and presentations).
• Avoiding academic misconduct and gaining credit by using academic sources and referencing effectively.
• Listening skills for lectures.
• Speaking in seminar presentations.
• Giving discipline-related academic presentations, experiencing peer observation, and receiving formative feedback.
• Speed reading techniques.
• Discussing ethical issues in research, and analysing results.
• Describing bias and limitations of research.
• Developing self-reflection skills.

More information

Study Options

The following alternative study options are available for this course:

Any Questions?

Our admissions team will be happy to help. They can be contacted on 0191 406 0901.

Applicants Contact Details:

bc.applicantservices@northumbria.ac.uk

Current, Relevant and Inspiring

We continuously review and improve course content in consultation with our students and employers. To make sure we can inform you of any changes to your course register for updates on the course page.

Your Learning Experience find out about our distinctive approach at 
www.northumbria.ac.uk/exp

Terms and Conditions - northumbria.ac.uk/terms
Fees and Funding - northumbria.ac.uk/fees
Admissions Policy - northumbria.ac.uk/adpolicy

Order your prospectus

If you're a UK/EU student and would like to know more about our courses, you can order a copy of our prospectus here.

Get a downloadable PDF of this course and updates from Mathematics, Physics and Electrical Engineering

Enter your details to receive an email with a link to a downloadable PDF of this course and to receive the latest news and information from Northumbria University

* By submitting your information you are consenting to your data being processed by Northumbria University (as Data Controller) and Campus Management Corp. (acting as Data Processor). To see the University's privacy policy please click here

+

Northumbria Open Days

Open Days are a great way for you to get a feel of the University, the city of Newcastle upon Tyne and the course(s) you are interested in.

+
+

Virtual Tour

Get an insight into life at Northumbria at the click of a button! Come and explore our videos and 360 panoramas to immerse yourself in our campuses and get a feel for what it is like studying here using our interactive virtual tour.

Back to top